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HORN’S PROBLEM, AND FOURIER ANALYSIS

Jacques Faraut

Abstract Let A and B be two n× n Hermitian matrices. Assume that the
eigenvalues α1, . . . , αn of A are known, as well as the eigenvalues β1, . . . , βn
of B. What can be said about the eigenvalues of the sum C = A+B ? This
is Horn’s problem. We revisit this question from a probabilistic viewpoint.
The set of Hermitian matrices with spectrum {α1, . . . , αn} is an orbit Oα for
the natural action of the unitary group U(n) on the space of n×n Hermitian
matrices. Assume that the random Hermitian matrix X is uniformly distri-
buted on the orbit Oα, and, independently, the random Hermitian matrix Y
is uniformly distributed on Oβ. We establish a formula for the joint distri-
bution of the eigenvalues of the sum Z = X + Y . The proof involves orbital
measures with their Fourier transforms, and Heckman’s measures.
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Introduction

Consider two Hermitian matrices A,B, and their sum C = A + B. As-
sume that the eigenvalues α1, . . . , αn of A are known, and the eigenvalues
β1, . . . , βn as well. Here is Horn’s problem : what can be said about the
eigenvalues γ1, . . . , γn of C ? Horn’s conjecture [1962] says that the set of
possible eigenvalues γ1, . . . , γn for C is determined by a family of inequalities
of the form ∑

k∈K

γk ≤
∑
i∈I

αi +
∑
j∈J

βj,

for certain ”admissible” triples (I, J,K) of subsets of {1, 2, . . . , n}. Weyl in-
equalities are of this type [Weyl,1912]. Klyachko describes these admissible
triplets in terms of Schubert calculus [1998]. To a subset I ⊂ {1, . . . , n} one
associates a Schubert variety. The admissible triplets are those for which the
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associated Schubert varietties have a non empty intersection. We will not go
further in this direction. See for instance the survey paper [Bhatia,2001].

It is possible to consider Horn’s problem from a probabilistic point of
view (See [Frumkin-Goldberger,2006], and [Zuber,2017]). The set of n × n
Hermitian matrices X with eigenvalues α1, . . . , αn is an orbit Oα for the
action of the unitary group U(n). Assume the random Hermitian matrix
X to be uniformly distributed on Oα, and, independently, the matrix Y
uniformly distributed on Oβ. The question is now : what is the distribution
of the eigenvalues γ1, . . . , γn of the sum Z = X+Y ? We follow this approach
and in this paper we determine explicitely this distribution να,β.

The proof uses the celebrated Harish-Chandra-Itzykson-Zuber integral,
and Heckman’s measures. For α = (α1, . . . , αn) ∈ Rn, the orbit

Oα = {Udiag(α1, . . . , αn)U∗ | U ∈ U(n)},

carries a natural probability, the orbital measure µα. The Fourier-Laplace
transform of µα is given by the Harish-Chandra-Itzykson-Zuber formula. He-
ckman’s measureMα is the projection of the orbital measure µα on the space
of diagonal matrices. Heckman studied this measure in a more general set-
ting, and gave an explicit formula for it [1982]. Our main result is an explicit
formula for the distribution να,β (Theorem 4.1) :

να,β = CnVn(x)
∑
σ∈Sn

ε(σ)δσ(α) ∗Mβ,

where Vn denotes the Vandermonde polynomial in n variables,

Vn(x) =
∏
i<j

(xi − xj),

and Sn is the symmetric group which acts on Rn as follows :

σ
(
(x1, . . . , xn)

)
= (xσ(1), . . . , xσ(n)).

The support S(α, β) of the measure να,β is the set of possible systems of
eigenvalues for the matrix C = A+B, if α1, . . . , αn are the eigenvalues of A,
and β1, . . . , βn the eigenvalues of B.

Horn’s problem is related to representation theory. If α and β are hi-
ghest weights of two irreducible representations πα and πβ of the unitary
group U(n), the spectrum of the tensor product πα ⊗ πβ is contained in
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the support of να,β. But we will not consider this aspect or Horn’s pro-
blem. See [Fulton,1998], [Fulton,2000], [Knutson-Tao,1999], [Knutson-Tao-
Woodward,2004].

We introduce in Section 1 the orbital measures on the space of Hermitian
matrices, and the radial part of a measure which is invariant under the action
of the unitary group. In section 2 we recall the Harish-Chandra-Itzykson-
Zuber integral, and, in Section 3, some properties of Heckman’s measures.
We state and prove our main result in Section 4. The case of a rank one
matrix B is considered in Section 5, and our result is compared to results of
Frumkin and Goldberger. In last Section we give some formulas related to
the case of 2× 2 real symmetric matrices. We conclude with a few remarks.

1 Orbital measures
Let Hn(R) = Sym(n,R), the space of n × n real symmetric matrices,

and Hn(C) = Herm(n,C), the space of n × n Hermitian matrices. For a
matrix X ∈ Hn(F) (F = R or C) the classical spectral theorem says that the
eigenvalues are real and the corresponding eigenspaces are orthogonal. We
will denote by Dn the space of real diagonal matrices, Dn ' Rn, and define
the chamber

Cn = {(t1, . . . , tn) ∈ Rn | t1 ≥ t2 ≥ · · · ≥ tn}.

Let Un(F) = O(n), the orthogonal group, and Un(C) = U(n), the unitary
group. The group Un(F) acts on the space Hn(F) by the transformations
X 7→ UXU∗ (U ∈ Un(F)). Let Oα denote the orbit of the diagonal matrix
A = diag(α1, . . . , αn) with (α1, . . . , αn) ∈ Cn :

Oα = {UAU∗ | U ∈ Un(F)}.

From the spectral theorem it follows that

Oα =
{
X ∈ Hn(F) | spectrum(X) = {α1, . . . , αn}

}
.

The orbit Oα carries a natural probability measure : the orbital measure µα,
image of the normalized Haar measure ω of the compact group Un(F) under
the map

Un(F)→ Hn(F), U 7→ UAU∗.
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For a continuous function f on Oα,∫
Oα
f(X)µα(dX) =

∫
Un(F)

f(UAU∗)ω(dU).

Let µ be a measure onHn(F) which is invariant under Un(F). The integral
of a function f can be decomposed as follows∫

Hn(F)

f(X)µ(dX) =

∫
Rn

(∫
Un(F)

f
(
U diag(t1, . . . , tn)U∗

)
ω(dU)

)
ν(dt),

where ν is a measure on Rn which is invariant under the symmetric group
Sn : for a function F on Rn, and σ ∈ Sn,∫

Rn
F (tσ(1), . . . , tσ(n))ν(dt) =

∫
Rn
F (t1, . . . , tn)ν(dt).

The measure ν is called the radial part of the measure µ. If µ is a probability
measure on Hn(F) which is Un(F)-invariant, its radial part ν is the joint
distribution of the eigenvalues of a random matrix X whose distribution is
the measure µ. For instance, the radial part να of the orbital measure µα is

να =
1

n!

∑
σ∈Sn

δσ(α),

where σ(α) =
(
ασ(1), . . . , ασ(n)

)
. If the measure µ has a density h with res-

pect to the Lebesgue measure m on the real vector space Hn(F) : µ(dX) =
h(X)m(dX), then, by the Weyl integration formula,

ν(dt) = C h(t) |Vn(t)|ddt1 . . . dtn,

where Vn is the Vandermonde polynomial,

Vn(t) =
∏

1≤i<j≤n

(ti − tj),

d = 1 if F : R, d = 2 if F = C, and C is a constant which depends on d and
n. In this paper the radial part ν is defined as a Sn-invariant measure on
Rn. It is more usual to define the radial part as a measure on the chamber
Cn. This is a slight difference, but responsible, in some explicit formulas, for
the appearence of a factor n! which does not show up in some other papers.
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Assume that the random Hermitian matrix X is uniformly distributed
on the orbit Oα, i.e. according to the orbital measure µα, and the random
Hermitian matrix Y is uniformly distributed onOβ, i.e. according to µβ. Then
the sum Z = X+Y is distributed according to the convolution product µα∗µβ
and the joint distribution of the eigenvalues of Z is equal to the radial part
να,β of µα ∗ µβ. In case of F = C we will determine explicitely the measure
να,β by using Fourier analysis (Theorem 4.1).

2 Fourier-Laplace transform
The Fourier-Laplace transform of a bounded measure µ on Hn(F) is given

by

Fµ(Z) =

∫
Hn(F)

etr(ZX)µ(dX).

The function F µ is defined on iHn(F). If the support of µ is compact, then
Fµ is defined on Sym(n,C) if F = R, on Mn(n,C) if F = C. If the measure
µ is Un(F)-invariant, its Fourier-Laplace transform Fµ is Un(F)-invariant as
well, and determined by its restriction to the space Dn of diagonal matrices.
For

Z = diag(z1, . . . , zn), z = (z1, . . . , zn) ∈ Cn,
T = diag(t1, . . . , tn), t = (t1, . . . , tn) ∈ Rn,

define the function

En(z, t) =

∫
Un(F)

etr (ZUTU∗)ω(dU).

The Fourier-Laplace transform of a Un(F)-invariant bounded measure µ can
be written, for Z = diag(z1, . . . , zn),

Fµ(Z) =

∫
Rn
En(z, t)ν(dt),

where ν is the radial part of µ. Observe that the Fourier-Laplace transform
of the orbital measure µα is given by

Fµα(Z) = En(z, α).

Since F(µα ∗ µβ) = FµαFµβ, we obtain the following key relation for deter-
mining the measure να,β.
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Proposition 2.1. The measure να,β is determined by the relation :
for z ∈ Cn, ∫

Rn
En(z, t)να,β(dt) = En(z, α)En(z, β).

Observe that this relation is nothing but the product formula for the
spherical functions of the following Gelfand pair (G,K) :

G = Un(F) nHn(F), K = Un(F).

The group G acts on Hn(F) by the transformations

g ·X = UXU∗ + A
(
g = (U,A)

)
.

A function f on G which is K-biinvariant can be seen as a Un(F)-invariant
function on Hn(F), and such a function only depends on the eigenvalues.
Hence we can identify a K-biinvariant function f on G to a Sn-invariant
function F on Rn :

f(g) = F (t1, . . . , tn),

if t1, . . . , tn are the eigenvalues of g ·0. The spherical functions of the Gelfand
pair (G,K) are given by

ϕz(g) = E(z, t)
(
t = (t1, . . . , tn), z ∈ Cn

)
.

They satisfy the functional equation :∫
K

ϕz(g1Ug2)ω(dU) = ϕz(g1)ϕz(g2) (g1, g2 ∈ G).

With the identification

ϕz(g1) = E(z, α), ϕz(g2) = E(z, β),

the functional equation can be written as∫
Rn
En(z, t)να,β(dt) = En(z, α)En(z, β).

For this viewpoint see the inspiring paper [Berezin-Gelfand,1962]. See also the
recent paper [Kuijlaars-Roman,2016]. Closely related is the paper [Graczyk-
Sawyer,2002], and Section 7 in [Rösler,2003].

In case of F = C, there is an explicit formula for En(z, t), the Harish-
Chandra-Itzykson-Zuber formula [Itzykson-Zuber,1980]. In fact it is a special
case of a formula established by Harish-Chandra for the adjoint action of a
compact Lie group on its Lie algebra [1957].
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Theorem 2.2. Let A,B,∈ Hn(C) with eigenvalues α1, . . . , αn and β1, . . . , βn.
Then ∫

Un(C)

etr (AUBU∗)ω(dU) = δn!
1

Vn(α)Vn(β)
det
(
eαiβj

)
1≤i,j≤n,

where δn = (n− 1, n− 2, . . . , 1, 0), δn! = (n− 1)!(n− 2)! . . . 2!.

Then we get

En(z, t) = δn!
1

Vn(z)Vn(t)
det
(
ezitj

)
1≤i,j≤n.

The formula can also be seen as the Fourier-Laplace transform of an orbital
measure :

Fµα(Z) = δn!
1

Vn(z)Vn(α)
det
(
eziαj

)
1≤i,j≤n,

for Z = diag(z1, . . . , zn).

3 Heckman’s measure
Let us consider the projection q of the space Hn(F) onto the subspace

Dn ' Rn of real diagonal matrices,

q : Hn(F)→ Rn, X 7→ (x1, . . . , xn), xi = Xii.

Recall the Horn’s convexity theorem [Horn,1954] : the image q(Oα) of the
orbit Oα is equal to the convex hull C(α) of the points σ(α),

q(Oα) = C(α) := Conv
(
{σ(α) | σ ∈ Sn}

)
.

From now on, in this section, we assume F = C. The image Mα = q(µα)
of the orbital measure µα is called Heckman’s measure. In fact this measure
has been described by Heckman in a more general setting [1982] (see also
[Duflo-Heckman-Vergne,1984]). The measureMα has support q(Oα) which is
contained in the hyperplane x1 + · · · + xn = α1 + · · · + αn. It is symmetric,
i.e. invariant under the group Sn, acting by permuting the coordinates. If
the eigenvalues α1, . . . αn are distinct, Heckman’s measure Mα is absolutely
continuous with respect to the Lebesgue measure of this hyperplane, and
its density is piecewise polynomial. These facts have been established by
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Heckman. Let us recall their proof in the present special case. For a bounded
measure M on Rn we will denote by M̂ its Fourier-Laplace transform :

M̂(z) =

∫
Rn
e(z|x)M(dx).

For α ∈ Rn with the αi all distinct, define the skew-symmetric measure

ηα =
δn!

Vn(α)

∑
σ∈Sn

ε(σ)δσ(α).

The Fourier-Laplace transform of ηα is given by

η̂α(z) =
δn!

Vn(α)

∑
σ∈Sn

ε(σ)e(z|σ(α)) =
δn!

Vn(α)
det
(
eziαj

)
1≤i,j≤n.

The map α 7→ ηα extends as a continuous map Rn → E ′(Rn), the space of
distributions on Rn with compact support. In particular

η0 = Vn

( ∂
∂x

)
δ0.

Proposition 3.1. Heckman’s measure Mα satisfies the following equation

Vn

(
− ∂

∂x

)
Mα = ηα.

Proof. For a bounded measure µ on Hn(C), the Fourier-Laplace transform of
the projection M = q(µ) of µ on Dn is equal to the restriction to Dn of the
Fourier-Laplace transform of µ : M̂(z) = Fµ(Z), for Z = diag(z1, . . . , zn).
Hence

M̂α(z) = Fµα(Z) = En(z, α).

Therefore, by the Harish-Chandra-Itzykson-Zuber formula (Theorem 2.2),

M̂α(z) = δn!
1

Vn(α)Vn(z)
det
(
eziαj

)
1≤i,j≤n =

1

Vn(z)
η̂α(z).

This equality, which can be written Vn(z)M̂α(z) = η̂α(z), means an equality
between two Fourier-Laplace transforms of compactly supported distribu-
tions, and implies the following differential equation

Vn

(
− ∂

∂x

)
Mα = ηα.
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For solving this equation we will use an elementary solution of the diffe-
rential operator Vn

(
∂
∂x

)
. Let us define the distribution En on Rn :

〈En, ϕ〉 =

∫
R
n(n−1)

2
+

ϕ
(∑
i<j

tijεij

)
dtij,

where εij = ei − ej ({e1, . . . , en} is the canonical basis of Rn).

Proposition 3.2. The distribution En is an elementary solution of the dif-
ferential operator Vn

(
∂
∂x

)
:

Vn

( ∂
∂x

)
En = δ0.

The support of En is the convex cone in the hyperplane x1 + · · · + xn = 0
generated by the vectors εij, with i < j. The distribution En is absolutely
continuous with respect to the Lebesgue measure of the hyperplane x1 + · · ·+
xn = 0. The cone supp(En) decomposes into a finite union of cones, and the
restriction of the density to each of these cones is a polynomial, homogeneous
of degree 1

2
(n− 1)(n− 2).

Proof. The differential opeartor Vn
(
∂
∂x

)
is a product of degree one differential

operators :

Vn

( ∂
∂x

)
=
∏
i<j

( ∂

∂xi
− ∂

∂xj

)
.

An elementary solution of ∂
∂xi
− ∂

∂xj
is the Heaviside distribution Yij defined

by

〈Yij, ϕ〉 =

∫ ∞
0

ϕ
(
tεij
)
dt.

Hence the convolution product

En =
∗∏
i<j

Yij

is an elementary solution of Vn
(
∂
∂x

)
.

For a function ϕ define ϕ̌(x) = ϕ(−x), and for a distribution T , 〈Ť , ϕ〉 =
〈T, ϕ̌〉.
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Theorem 3.3. The Heckman measure Mα is given by

Mα = Ěn ∗ ηα.

If the αi are all distinct, the measureMα is absolutely continuous with respect
to the Lebesgue measure of the hyperplane x1 + · · ·+ xn = α1 + · · ·+αn, and
the density is piecewise polynomial. This density is continuous for n ≥ 3.
The map α 7→ Mα extends as a continuous map Rn → M1

c(Rn), the set of
probability measures on Rn with compact support.

Proof. Observe first the following fact : let F and G be distributions on Rn.
Assume the support of F to be compact. Let D = P

(
∂
∂x

)
be a differential

operator with constant coefficients. Then

DF ∗G = F ∗DG = D(F ∗G).

Therefore
Ěn ∗ Vn

(
− ∂

∂x

)
Mα = Vn

(
− ∂

∂x

)
Ěn ∗Mα = Mα.

By Proposition 3.1,

Vn

(
− ∂

∂x

)
Mα = ηα.

Hence
Mα = Ěn ∗ ηα.

Example 1, n=2

The elementary solution E2 is given by

〈E2, ϕ〉 =

∫ ∞
0

ϕ
(
tε1,2

)
dt.

In the present case

S2 = {Id, τ}, τ : (x1, x2) 7→ (x2, x1).

By Theorem 3.3,

〈Mα, ϕ〉 =
1

α1 − α2

(∫ ∞
0

ϕ
(
α− t1ε1,2

)
dt1 −

∫ ∞
0

ϕ
(
τ(α)− t2ε1,2

)
dt2

)
.

=

∫ 1

0

ϕ
(
(1− t)α + tτ(α)

)
dt.
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Observe that the support of Mα is the segment [α, τ(α)].

Example 2, n=3

The elementary solution E3 is given by

〈E3, ϕ〉 =

∫
(R+)3

ϕ(uε1,2 + vε2,3 + wε1,3)dudvdw

=

∫
(R+)3

ϕ
(
(u+ w)ε1,2 + (v + w)ε2,3

)
dudvdw.

=

∫
{0≤w≤s,0≤w≤t}

ϕ(sε1,2 + tε2,3)dsdtdw

=

∫
(R+)2

inf(s, t)ϕ(sε1,2 + tε2,3)dsdt.

Hence the suppport of E3 is the angle defined by the rays generated by ε1,2

and ε2,3, with density, if x = sε1,2 + tε2,3, f(s, t) = inf(s, t).
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(α1, α2, α3)(α2, α1, α3)

(α3, α1, α2)

(α3, α2, α1) (α2, α3, α1)

(α1, α3, α2)

ε12

ε23 ε13

Figure 1. Heckman’s measure, n=3. For α1 > α2 > α3, the support of the
measure Mα is the convex hull of the six points σ(α) (σ ∈ S3). The density
of Mα is affine linear in the three trapezia, and in the three lateral triangles,
and constant in the middle triangle.

4 The radial part of the convolution product of
two orbital measures

Recall that να,β denotes the radial part of the convolution product µα∗µβ.
(The convolution is with respect to Hn(F).) By Proposition 2.1, the measure
να,β is determined by the relation∫

Rn
E(z, t)να,β(dt) = E(z, α)E(z, β).
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Theorem 4.1. Assume F = C, the eigenvalues α1, . . . , αn to be distinct, and
the eigenvalues β1, . . . , βn distinct as well. The radial part να,β is given by

να,β =
1

n!

1

δn!
Vn(x) Mα ∗ ηβ =

1

n!

1

δn!
Vn(x) ηα ∗Mβ,

or
να,β =

1

n!

Vn(x)

Vn(α)

∑
σ∈Sn

ε(σ)δσ(α) ∗Mβ.

The map (α, β) 7→ να,β extends continuously as a map Rn × Rn →M1
c(Rn).

Here the convolutions are with respect to Rn. The measure να,β is a Sn-
invariant probability measure on Rn. Observe that

να,0 = να =
1

n!

∑
σ∈Sn

δσ(α).

Theorem 4.1 can be seen as a special case of Theorem 2.1 in [Graczyk-
Sawyer,2002]. A similar result, but slightly different, is given in [Rösler,2003],
p.2436.

Proof. Define ν = Vn(x) Mα ∗ ηβ, and let us compute

I(z) =

∫
Rn
En(z, x)ν(dx).

The measure Mα is symmetric, and ηβ is skew symmetric, therefore M =

Mα ∗ ηβ is skew symmetric, and its Fourier-Laplace transform M̂ as well. We
obtain

I(z) =
δn!

Vn(z)

∫
Rn

det
(
ezixj

)
1≤i,j≤nM(dx)

=
δn!

Vn(z)

∑
σ∈Sn

ε(σ)

∫
Rn
e(σ(z)|x)M(dx)

=
δn!

Vn(z)

∑
σ∈Sn

ε(σ)M̂
(
σ(z)

)
=

δn!

Vn(z)
n!M̂(z).

Since
M̂(z) = M̂α(z)η̂β(z) = E(z, α)

δn!

Vn(β)
det
(
eziβj

)
1≤i,j≤n,
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we obtain
I(z) = n!δn!E(z, α)E(z, β),

which gives the formula of Theorem 4.1.

Recall that S(α, β) denotes the support of the measure να,β. The Sn-
invariant compact set S(α, β) ⊂ Rn is the set of possible systems of eigenva-
lues for C = A+B, if α1, . . . , αn are the eigenvalues of A, and β1, . . . , βn the
eigenvalues of B.

Corollary 4.2. (i) We have the following inclusion :

S(α, β) ⊂
⋃
σ∈Sn

(
σ(α) + C(β)

)
.

(ii) If
min
i<j

(αi − αj) ≥ max
k,`
|βk − β`|,

then :
S(α, β) ∩ Cn = α + C(β).

Recall that C(β) is the convex hull of the points σ(β) (σ ∈ Sn), and Cn
is the chamber :

Cn = {t = (t1, . . . , tn) ∈ Rn | t1 ≥ · · · ≥ tn}.

Part (i) is related to Lidskii’s theorem [1950], and can be equivalently written
as a system of inequalities∑

k∈K

xk ≤
∑
i∈I

αi +
∑
j∈J

βj,

with suitable triples {I, J,K}. See [Bhatia,2001], p.295, and [Bhatia,1997],
Theorem II.1.10.

Proof. a) The support of the measure ηα is the orbit of α under the action of
Sn :

supp(ηα) = {σ(α) | σ ∈ Sn},
and, by Horn’s Theorem, the support of Heckman’s measure Mβ is

supp(Mβ) = q(Oβ) = C(β).
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The statement (i) follows since

supp(ηα ∗Mβ) ⊂ supp(ηα) + supp(Mβ).

In general this is an inclusion and not an equality, because the measure ηα
has positive and negative parts, and cancellations are possible.

b) Under the condition

min
i<j

(αi − αj) > max
k,`
|βk − β`|,

the sets σ(α) + C(β) are disjoint, and there is one of them in each chamber
σ(Cn) (σ ∈ Sn). Hence no cancellation is possible.

Theorem 4.1 can be extended as follows. For α, β, γ ∈ Rn, the radial part
of µα ∗ µβ ∗ µγ is given by

να,β,γ =
1

n!

1

δn!
Vn(x)ηα ∗Mβ ∗Mγ.

It generalizes to any finite convolution product. For α(1), . . . , α(k) ∈ Rn, the
radial part of µα(1) ∗ · · · ∗ µα(k) is given by

να(1),...,α(k) =
1

n!

1

δn!
Vn(x)ηα(1) ∗Mα(2) ∗ · · · ∗Mα(k) .

Example 1, n=2

We use the same notation as in Example 2 of Section 3. We saw that

〈Mα, ϕ〉 =

∫ 1

0

ϕ
(
(1− t)α + tτ(α)

)
dt.

In this special case, with a := V2(α) = α1 − α2, the measure ηα is

ηα =
1

a

(
δα − δτ(α)

)
.

One can check the following formula for the Fourier-Laplace transform of ηα :

η̂α(z) = e
1
2

(z1+z2)(α1+α2) 1

a

(
e
a
2

(z1−z2) − e−
a
2

(z1−z2)
)
.
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By Theorem 4.1,

να,β =
1

2
V2(x) Mα ∗ ηβ =

1

2
V2(x) ηα ∗Mβ.

Let us explicit the measure να,β by using the second expression :

〈να,β, ϕ〉

=
1

2a

∫ 1

0

(
a+ (1− 2t)b

)
ϕ
(
(1− t)(α + β) + t(α + τ(β)

)
dt

+
1

2a

∫ 1

0

(
a− (1− 2t)b

)
ϕ
(
(1− t)(τ(α) + β) + t(τ(α) + τ(β)

)
dt,

where b = V2(β) = β1 − β2. The support S(α, β) of να,β is the union of two
segments. If a < b, then

S(α, β) = [α + β, α + τ(β)] ∪ [τ(α) + β, τ(α) + τ(β)].

If a < b, there are some cancellations, and one obtains

S(α, β) = [α + β, τ(α) + β] ∪ [α + τ(β), τ(α) + τ(β)],

and one checks the symmetry νβ,α = να,β.
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α

α + β

ε = +1 ε = −1

Figure 2. Support S(α, β) of να,β, α = (3, 0,−3), β = (1, 0,−1). The
support is the union of the six hexagons.
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α

α + β

ε = +1 ε = −1ε = +1 ε = −1

Figure 3. Support S(α, β) of να,β, α = (3, 0,−3), β = (2, 0,−2). The
support is the union of the six hexagons.
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5 The case of a rank one matrix B

In this section we consider the special case of a rank one matrix B. In
such a case β = (b, 0, . . . , 0) with b > 0, or β = (0, . . . , 0, b), with b < 0.
We assume first that β = (1, 0, . . . , 0). The orbit Oβ is the set of Hermitian
matrices Y = (uiūj), vhere u = (u1, . . . , un) is a unit vector, u ∈ S(Fn). In
case of F = R, the orbit Oβ can be identified with S(Rn)/{+1,−1}n, and, in
case of F = C, with S(Cn)/Tn.

Recall that q denotes the projection q : Hn(F)→ Dn ' Rn. Then

q(Oβ) = {(|u1|2, . . . , |un|2) | u ∈ S(Fn)}

is the simplex Σn = Conv(e1, . . . , en), contained in the hyperplane x1 + · · ·+
xn = 1. The orbital measure µβ is the image by of the normalized uniform
measure on the sphere S(Fn).

We assume that F = C for the rest of this section.

Proposition 5.1. Heckman’s measureMβ = q(µβ) is the normalized uniform
measure on the simplex Conv(e1, . . . , en), i.e. the normalized restriction to the
simplex Σn of the Lebesgue measure of the hyperplane x1 + · · ·+ xn = 1.

Proof. The image of the normalized uniform measure on the sphere S(Cn)
under the map

S(Cn)→ Σn, u 7→ (|u1|2, . . . , |un|n),

is the normalized restriction of the Lebesque measure on the hyperplane
x1 + · · ·+ xn = 1 to Σn.

Consider on the hyperplane x1 + · · ·+ xn = 1 the differential form

w = dx1 ∧ · · · ∧ dxn−1.

Then ∫
Σn

w =
1

(n− 1)!
,

and Heckman’s measure Mβ can be given by

〈Mβ, ϕ〉 = (n− 1)!

∫
Σn

ϕ(x)w.
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Whereas it will not be used in the sequel we give a formula for the Fourier-
Laplace transform of Heckman’s measure Mβ in this special case :

M̂β(z) =

∫
Rn
e(z|x)Mβ(dx) = (n− 1)!

1

Vn(z)

∣∣∣∣∣∣∣∣∣∣∣

ez1 . . . ezn

zn−2
1 . . . zn−2

n
...

...
z1 . . . zn
1 . . . 1

∣∣∣∣∣∣∣∣∣∣∣
.

(This formula can be obtained by using Theorem 4.1 in [Faraut,2015].)
Recall that, for α = (α1, . . . , αn) ∈ Cn, να,β denotes the radial part of

the measure µα ∗µβ. The following result has been obtained by Frumkin and
Goldberger (Theorem 6.1 and Theorem 6.7 in [Frumkin-Goldberger,2006]).

Theorem 5.2. Assume that β = (b, 0, . . . , 0) with b > 0.
(i) The support S(α, β) of να,β is given by

S(α, β) ∩ Cn =
{x ∈ Rn | x1 ≥ α1 ≥ · · · ≥ xn ≥ αn, x1 + · · ·+ xn = α1 + · · ·+ αn + b}.

(ii) The measure να,β is absolutely continuous with respect to the Lebesgue
measure of the hyperplane x1 + · · ·+ xn = α1 + · · ·+ αn + b with the density

h(x) =
1

n

1

bn−1

1

Vn(α)
Vn(x).

(It is assumed that the Lebesgue measure on the hyperplane x1+· · ·+xn =
α1 + · · ·+αn + b is associated to the differential form w = dx1∧ · · · ∧ dxn−1.)

The inclusion

S(α, β) ∩ Cn
⊂ {x ∈ Rn | x1 ≥ α1 ≥ · · · ≥ xn ≥ αn, x1 + · · ·+ xn = α1 + · · ·+ αn + b}.

can be found in [Horn-Johnson,1985] (Theorem 4.3.4).

By Theorem 4.1, the density is given in the present case by

h(x) =
1

n

Vn(x)

Vn(α)

∑
σ∈Sn

ε(σ)
1

bn−1
χ
(x− δσ(α)

b

)
,
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where χ is the indicatrix of the simplex Σn.
Let us comment how Theorem 5.2 is related to Theorem 4.1 and Corol-

lary 4.2. The conditions in (i) can be split in two parts :

(I) x1 ≥ α1, . . . , xn ≥ αn, x1 + · · ·+ xn = α1 + · · ·+ αn + b.

(II) x2 ≤ α1, . . . , xn ≤ αn−1.

Let us introduce barycentrical coordinates si :

xi = αi + bsi (i = 1, . . . , n).

Conditions (I) give

s1 ≥ 0, . . . , sn ≥ 0, s1 + · · · sn = 1,

which mean that x ∈ α + bΣn. If

b ≤ αi−1 − αi (i = 2, . . . , n),

then (I) imply (II). Therefore, in this case, S(α, β) ∩ Cn = α + bΣn.
Observe that the measure να,β does not change essentially if one replace

α = (α1, . . . , αn) by (α1 + c, . . . , αn + c), and β = (β1, . . . , βn) by (β1 +
d, . . . , βn + d) (c, d ∈ R). We will write (α1 + c, . . . , αn + c) ∼ (α1, . . . , αn).
Hence in this section we have considered the case for B to have an eigenvalue
of multiplicity n− 1, rather than to be of rank one.
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ε = +1 ε = −1

Figure 4 n = 3. Support S(α, β) of να,β, α = (3, 0,−3), β = (3, 0, 0) ∼
(2,−1,−1). The support is the union of the six triangles.

In general there are cancellations which should correspond to conditions
(II).
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ε = +1 ε = −1

Figure 5 n = 3. Support S(α, β) of να,β, α = (3, 0,−3), β = (6, 0, 0) ∼
(4,−2,−2). The support is the union of the six triangles, minus the six
intersections of two triangles.

6 Real symmetric matrices, n = 2

In the case of real symmetric matrices, we know explicitely Heckman’s
measure and the measure να,β only in case of n = 2. For α = (α1, α2), the
orbit Oα is the set of the matrices(

cos θ − sin θ
sin θ cos θ

)(
α1 0
0 α2

)(
cos θ sin θ
− sin θ cos θ

)
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=

(
α1 cos2 θ + α2 sin2 θ (α1 − α2) cos θ sin θ
(α1 − α2) cos θ sin θ α1 sin2 θ + α2 cos2 θ

)
.

As in the case of 2× 2 Hermitian matrices, the image ot the orbit Oα under
the projection q : H2(R)→ D2 ' R2 is the segment [α, τ(α]. The projection
Mα of the orbital measure µα is given by

〈Mα, ϕ〉 =
1

2π

∫ 2π

0

ϕ
(
α1 cos2 θ + α2 sin2 θ, α1 sin2 θ + α2 cos2 θ

)
dθ

=
1

π

∫ 1

0

ϕ
(
(1− t)α + tτ(α)

) dt√
t(1− t)

.

Proposition 6.1. The Fourier-Laplace transform of the orbital measure µα
is given, if Z = diag(z1, z2), by

Fµα(iZ) = M̂α(iz)

∫
R2

ei(z1x1+z2x2)Mα(dx)

= e
i
2

(z1+z2)(α1+α2)J0

(1

2
(z1 − z2)(α1 − α2)

)
,

where J0 is the Bessel function of index 0.

Proof. By the previous formula

M̂α(iz) =
1

π

∫ 1

0

ei
(
z|(1−t)α+tτ(α)

)
dt√

t(1− t)
.

Put t = 1
2
(1− cos θ). Then

1− t =
1

2
(1 + cos θ), dt =

1

2
sin θdθ,

and

((z | (1− tα + tτ(α)
)

=
1

2
(z1 + z2)(α1 + α2) +

1

2
(z1 − z2)(α1 − α2) cos θ.

We obtain

M̂α(iz) =
1

π
e
i
2

(z1+z2)(α1+α2)

∫ π

0

e
i
2

(z1−z2)(α1−α2) cos θdθ.
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Recall the following integral formula for the Bessel function J0 :

J0(ζ) =
1

π

∫ π

0

eiζ cos θdθ.

We introduce the following notation : for α = (α1, α2), and β = (β1, β2),

τ = α1 + α2 + β1 + β2, a = α1 − α2, b = β1 − β2.

If a, b, c are the three wedges of a triangle, we denote by ∆(a, b, c) the area
of this triangle. Recall the classical formula :

∆(a, b, c)2 = p(p− a)(p− b)(p− c),

where p is half the perimeter of the triangle.

Theorem 6.2. The measure να,β is given by

〈να,β, ϕ〉 =
1

2π

∫ a+b

|a−b|
ϕ
(1

2
(τ + r)e1 +

1

2
(τ − r)e2

) 2rdr

∆(a, b, r)
.

+
1

2π

∫ a+b

|a−b|
ϕ
(1

2
(τ − r)e1 +

1

2
(τ + r)e2

) 2rdr

∆(a, b, r)
.

Proof. Recall the product formula for the Bessel function J0 :

J0(ζa)J0(ζb) =
1

π

∫ π

0

J0(ζ
√
a2 + b2 + 2ab cos θ)dθ.

This can be written

J0(ζa)J0(ζb) =

∫ a+b

|a−b|
J0(ζr)

2rdr√
(2ab)2 − (a2 + b2 − r2)2

.

Since

(2ab)2−(a2+b2−r2)2 = (a+b+r)(a+b−r)(r+a−b)(r−a+b) = 16∆(a, b, r)2,

it can also be written

J0(ζa)J0(ζb) =
1

2π

∫ a+b

|a−b|
J0(ζr)

rdr

∆(a, b, r)
.
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It follows that the function E(z, α) satisfies the following product formula

E(z, α)E(z, β) =
1

2π

∫ a+b

|a−b|
E(z, ρ)

rdr

∆(a, b, r)
,

with ρ = (ρ1, ρ2), r = ρ1 − ρ2. By Proposition 2.1, this establishes Theorem
6.2.

Remarks

In the case of the space of real symmetric matrices Hn(R), with the
action of the orthogonal group O(n), for n ≥ 3, we don’t know any explicit
formula for Heckman’s measure, and for the measures να,β. This setting is
natural, however the problem is more difficult that in the case of the space of
Hermitian matrices, and one should not expect any explicit formula. However
the supports should be the same as in the case of Hn(C) with the action of
the unitary group U(n), according to [Fulton,1998], p.265, and [Fulton,2000],
Section 10.7.

There should be an analogue of the results presented in this paper in
case of pseudo-Hermitian matrices. In this setting, an analogue of Horn’s
conjecture has been established in [Foth,2010]. An analogue of Theorem 4.1
could probably be obtained by using a formula for the Laplace transform of
an orbital measure for the action of the pseudo-unitary group U(p, q) on the
space Hn(Cn) (n = p+ q). This formula is due Ben Saïd and Ørsted [2005].
A related problem has been studied by using this formula in [Faraut,2017].

More generally one could consider Horn’s problem for the adjoint ac-
tion of a compact Lie group on its Lie algebra. The Fourier transform of
an orbital measure is explicitely given by the Harish-Chandra integral for-
mula [1957]. Heckman’s paper [1982] is written in this framework. One can
expect that there is an analogue of Theorem 4.1 in this setting. In parti-
cular one can consider the action of the orthogonal group on the space of
real skew-symmetric matrices. See [Zuber,2017], and, for a different problem,
[Zubov,2016].

One observes some similarity between the results by Frumken and Gold-
berger [2006], stated in Theorem 5.2 and the classical Cauchy interlacing
properties together with Baryshnikov’s formula. See [Baryshnikov,2001], and
also [Olshanski,2013], [Faraut,2015]. There should be an explanation.
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